Notes

\[ y(x,t) = y_m sin(kx-\omega t) \]

k = angular wave number w = angular frequency

Traveling waves are generally expressed as:

\[ y(x,t) = h(kx\pm \omega t) \]

Attributes

Wavelength to k

\[ k = \frac{2\pi}{\lambda} \]

Period to frequency

\[ \frac{\omega}{2\pi} = f = T^{-1} \]

Wave speed

\[ v =\frac{\omega}{k} =\frac{\lambda}{T} = \lambda f \]

Wave speed on stretched string

\[ v=\sqrt{\frac{\tau}{\mu}} \]

\(\tau\) = tension \(\mu\) = linear density

Average Power of a wave on a stretched string

\[ P_{avg} = \frac{1}{2}\mu v \omega^2 y_m^2 \]

Interactions

Interference

\[ y'(x,t) = [2y_m \cos \frac{1}{2}\phi] \sin(kx-\omega t +\frac{1}{2}\phi) \]

Interference of two waves with same direction, amplitude, frequency (thus wavelength) but different phase constant \(\phi\)

Power

\[ P_{avg} = \frac{1}{2}\mu v \omega^2 y_m^2 \]

Wave equation

\[ \pdv[2]{y}{x} = \frac{1}{v^2}\pdv[2]{y}{t} \]

Standing waves

\[ y'(x,t) =[2y_m \sin kx] \cos \omega t \]

nodes: \[ x=n {\lambda \over 2} \]

antinodes: \[ x=(n+{1\over2}){\lambda \over 2} \]

harmonic series:

\[ \lambda = \frac{2L}{n} \]

\[ f=n\frac{v}{2L} \]